Каталог книг

Яглов В.В. Основы цитологии, эмбриологии и гистологии

Перейти в магазин

Сравнить цены

Категория: Медицина

Описание

Сравнить Цены

Предложения интернет-магазинов
Яглов В.В. Основы цитологии, эмбриологии и гистологии Яглов В.В. Основы цитологии, эмбриологии и гистологии 1904 р. bookvoed.ru В магазин >>
Константинова И., Булатова Э., Усенко В. Основы цитологии, общей гистологии и эмбриологии животных: Учебное пособие Константинова И., Булатова Э., Усенко В. Основы цитологии, общей гистологии и эмбриологии животных: Учебное пособие 929 р. chitai-gorod.ru В магазин >>
Самусев Р., Смирнов А. Атлас по цитологии гистологии и эмбриологии Самусев Р., Смирнов А. Атлас по цитологии гистологии и эмбриологии 388 р. chitai-gorod.ru В магазин >>
Гистология в схемах и таблицах. Учебное пособие. Цветной атлас Гистология в схемах и таблицах. Учебное пособие. Цветной атлас 603 р. labirint.ru В магазин >>
Сергей Зиматкин Гистология, цитология и эмбриология. Учебник Сергей Зиматкин Гистология, цитология и эмбриология. Учебник 227 р. litres.ru В магазин >>
Атлас по гистологии. Для студентов, обучающихся по специальности Атлас по гистологии. Для студентов, обучающихся по специальности "Ветеринария" 526 р. labirint.ru В магазин >>
Константинова И.С. Основы цитологии, общей гистологии и эмбриологии животных: учебное пособие Константинова И.С. Основы цитологии, общей гистологии и эмбриологии животных: учебное пособие 1084 р. bookvoed.ru В магазин >>

Статьи, обзоры книги, новости

Описание основы цитологии, эмбриологии и гистологии

Основы цитологии, эмбриологии и гистологии. Учебник

уточнить цену на сайте интернет магазина

Купить Основы цитологии, эмбриологии и гистологии. Учебник в интернет магазинах по следующим ценам Цена в рублях Описание товара

Учебник предназначен для изучения основ цитологии, эмбриологии и гистологии и объективного контроля формирования и выявления остаточных знаний. В учебнике представлены оригинальные схемы, позволяющие понять и запомнить развитие и структуру клеток, тканей, органов и систем органов.Соответствует требованиям Федерального государственного образовательного стандарта высшего образования последнего поколения.Для студентов высших учебных заведений, обучающихся по специальности "Ветеринария", а также.. посмотреть полное описание о Основы цитологии, эмбриологии и гистологии. Учебник

Характеристики Рекомендуем также следующие похожие товары на Основы цитологии, эмбриологии и гистологии. Учебник Детали машин и основы конструирования. Учебник и практикум

В учебнике изложены основы теории, расчетов и конструирования деталей и механических узлов, которые используются в машиностроении. Дополнительно включены..

Лекции по гистологии, цитологии и эмбриологии. Учебное пособие

Учебное пособие включает вопросы общей и частной гистологии, цитологии и эмбриологии. Структура книги соответствует учебной программе для медицинских вузов и..

Цветной атлас по цитологии, гистологии и микроскопической анатомии

Нестареющий карманный атлас - идеальное дополнение для любого учебника по гистологии и цитологии. Полностью пересмотренное и дополненное 4-е издание содержит..

Латинский язык и основы фармацевтической терминологии. Учебник

В пятое издание внесены необходимые авторские уточнения и добавления.Все основные научные и методические принципиальные новшества и установки четвертого..

Детали машин и основы конструирования . Учебник

Приведены основы теории и расчета деталей машин; методология и методика проектирования механических приводов технологического оборудования агропромышленного..

Тесты по цитологии, эмбриологии и общей гистологии для самостоятельной подготовки и контроля студентов ветеринарных вузов

Учебное пособие подготовлено в соответствии с действующим учебным планом и программой по курсу "Цитология, гистология и эмбриология" для студентов, обучающихся..

Источник:

bookprose.ru

ИСТОРИЯ РАЗВИТИЯ ГИСТОЛОГИИ, ЦИТОЛОГИИ И ЭМБРИОЛОГИИ

ИСТОРИЯ РАЗВИТИЯ ГИСТОЛОГИИ, ЦИТОЛОГИИ И ЭМБРИОЛОГИИ. РАЗВИТИЕ ГИСТОЛОГИИ В БЕЛАРУСИ

В развитии гистологии, цитологии и эмбриологии можно условно выде­лить три периода: домикроскопический, микроскопическийи современный,электронномикроскопический или, правильнее, синтетическийпериод.

Домикроскопический периодзанимает временной интервал с IV века до н.э. по XVII век. Характеризуется этот период лишь общими, весьма приблизительными представлениями о тканях организма. Эти представле­ния основывались только на внешних чертах тканей, их сходстве и разли­чиях. Поэтому данный период мало внес в понимание о строениях тканей иорганов организма, не говоря уже о том, что представления о клетке как о важном уровне организации живого вообще не могли возникнуть.

В связи с этим, зародившись до создания микроскопа, свое действи­тельное развитие гистология как наука получила только с созданием све­тового микроскопа (светомикроскопический период,включающий времен­ной интервал с XVII по середину XX века). Первую попытку сконструиро­вать микроскоп предпринял в 1609—1610 гг. Г. Галилей. Одним из первых создателей микроскопа был К. Дреббель (1619 г.). Братья Янсены, а затем Р. Гук усовершенствовали микроскоп. Р. Гук впервые начал изучать с его помощью клетки растений и животных. В 1677 г. А. Левенгук создал мик­роскоп, дающий увеличение примерно в 300 раз. Это позволило ему изу­чать клетки крови и их движение, сперматозоиды и ряд других биологи­ческих объектов.

В XVIII веке в Голландии и России были изобретены первые ахромати­ческие микроскопы, дающие четкое изображение. Это способствовало даль­нейшему развитию микроскопической техники и формированию описатель­ной гистологии. Толчок к ее бурному развитию дал французский анатом К. Биша, который в 1801 г. на основании макроскопических (анатомических) исследований представил развернутую классификацию тканей. 13 1819 г. его ученик К. Майер ввел термин "гистология". В 20—30-е годы XIX века Я. Пуркине, П. Горянинов, Т. Шванн и М. Шлейдеи получили большой мате­риал о строении и развитии клеток и тканей. В 1825—1827 гг. Я. Пуркине описал ядро растительной клетки, а в 1836—1837 гг. Г. Валентин — ядро и ядрышко животных клеток.

В 1839 г. немецкий ученый Т. Шванн обощает накопленные данные и формулирует клеточную теорию. Она постулировала общность строения животных и растительных организмов и имела большое значение для даль­нейшего развития естествознания, в том числе и гистологии. Основные по­ложения клеточной теории Т. Шванн изложил в монографии "Микроскопи­ческое исследование о соответствии в структуре и росте животных и расте­ний".Вскоре после опубликования ее австрийский ученый А. Келикер рас­пространил клеточную теорию на ранние стадии эмбрионального развития организма. В 1841 — 1844 гг. он показал, что сперматозоиды и яйцеклетки являются клетками. Из клеток состоит и организм, возникающий в ходе дробления оплодотворенной женской половой клетки.

Во второй половине XIX века стало общепризнанным, что клетки в соста­ве многоклеточных животных существуют не самостоятельно, а как части тка­ней. В это время делаются попытки создать окончательную классификацию тканей. Ф. Лейдиг (1853) и А. Келикер (1855) систематизировали накоплен­ный материал и объединили все известные к этому времени ткани (21 вид) в 4 типа тканей. Однако для понимания закономерностей тканевой организа­ции животных необходимо было накопление фактического материала. Это стало возможно с созданием во второй половине XIX века новых конструк­ций микроскопов. Одновременно развивалась гистологическая техника. Боль­шая заслуга в этом принадлежит знаменитому чешскому физиологу, гистологу и микроскописту Я. Пуркине. Именно он ввел ряд настолько существенных усовершенствований в гистологическую технику, что она сохранила свои ос­новные этапы до настоящего времени. Я.Э. Пуркине также сконструировал первый микротом. В результате в XIX веке были получены новые данные о строении клеток, тканей и органов.

Так, в 1852 г. Р. Ремак описал амитоз. В 1859 г. Р. Вихров допол­нил клеточную теорию и создал элементы клеточной патологии. В 1861 г. М. Шульце дал первое определение клетки. В 1871 — 1879 гг. описан ми­тоз растительной (И.Д. Чистяков) и животной (П.И. Перемежко, В. Фле­минг) клеток, изучена последовательность митоза. В 1884 г. О. Гертвиг и Э. Страсбургер высказали гипотезу о том, что хроматин является матери­альным носителем наследственности. В 1875—1876 гг. О. Гертвиг и Е. ван Бенеден обнаружили клеточный центр, в 1898 г. немецкий ученый Р. Аль­тман открыл митохондрии, а К. Гольджи в 1899 г. описал внутриклеточ­ный сетчатый аппарат.

К концу XIX века в основном было закончено микроскопическое опи­сание органов и тканей и создана микроскопическая анатомия. Благодаря разработке методики импрегнации нервных элементов раствором серебра была исследована наиболее трудная для изучения область — нервная систе­ма. В ее изучении большая роль принадлежит С. Рамон-и-Кахалю, К. Гольджи, а затем А.С. Догелю и Б.И. Лаврентьеву. Благодаря усилиям этих и ряда других ученых была сформулирована и получила свое подтверждение нейронная теория.

Большой вклад в развитие гистологии в это время внесли русские уче­ные. А.И. Бабухин изучал строение и функции мышечной и нервной тка­ни. А.С. Догель, М.Д. Лавдовский, А.Н. Миславский детально исследова­ли периферическую и центральную нервную систему. А.О. Ковалевский и И.И. Мечников изучали формирование тканей в процессе эволюции и со­здали основы эволюционной гистологии. Сформулированная И.И. Меч­никовым фагоцитарная теорияимела огромное значение, т.к. объяснила многие общие вопросы жизнедеятельности тканей и клеток. За ее разра­ботку И.И. Мечников был удостоен Нобелевской премии.

В начале XX века исключительно описательное направление гисто­логии постепенно обогащается сравнительными и экспериментальными работами. Наибольшая заслуга в развитии эволюционной гистологии принадлежит А.А. Заварзину, который первым сформулировал одну из наиболее интересных теорий эволюции тканей. Обнаружив у членисто­ногих и позвоночных сходство в строении многих тканей, А.А. Завар-зин сделал вывод о том, что наличие у всех животных четырех систем тканей обусловлено единым принципом их взаимодействия с внешней средой. При этом тканевые системы выполняют 4 наиболее общие фун­кции: 1) защитную, или внешнего обмена; 2) внутреннего обмена, или поддержания постоянства внутренней среды; 3) движения; 4) реактивнос­ти. Теория А.А. Заварзина об эволюции тканей была названа теорией параллельного развития тканей.Согласно этой теории животные различ­ных типов имеют общий принцип тканевой организации и состоят из четырех тканевых систем.

Теоретическая разработка проблем эволюции тканей продолжена в трудах Н.Г. Хлопипа. Он обосновал теорию дивергентной эволюции тка­ней.Согласно этой теории при эволюционном развитии тканей их эволю­ция идет с расхождением признаков, т.е. дивергентно. Это ведет к много­образию видов тканей.

Большой вклад в развитие гистологии в начале XX века внес А.А. Максимов. Его труды но гистогенезу кроветворных и соединительных тка­ней актуальны и в настоящее время. А.А. Максимов обосновал унитар­ную теорию кроветворения,описал реакцию блаеттрансформации лим­фоцитов, дал первое описание морфологии стволовой кроветворной клет-ки. Он создал прекрасные руководства но гистологии, не утратившие своей актуальности и в настоящее время.

До 50-х годов XX века в гистологии продолжалась разработка описа­тельного, эволюционного и экспериментального подходов. Новый толчок к дальнейшему развитию гистологии дало открытие немецкими учеными (Е. Руска, М. Кполль, Б. Боррие) электронного микроскопа (1928—1931 гг.) и применение его в гистологических исследованиях (конец 40-х—начало 50-х годов). С этого момента начинается новый этап в развитии гистологии — электронномикроскопический.В течение короткого времени было изучено строение клетки на ультраструктурном уровне. В 1954 г. А. Родин открыл пероксисомы. 1955 г. характеризуется двумя крупными открытиями: Г. Па-ладе описал рибосомы и эндоплазматическую сеть, а К. де Дюв обнаружил лизосомы. К началу 60-х годов были открыты все не известные до этого вре­мени органеллы, а также установлено тонкое строение ранее известных опи­санных на светомикроскопическом уровне органелл. В 60—80-е годы разви­ваются методы электронной гистохимии и электронной ауторадиографии. К этому времени практически завершается описание электронномикроскопи-ческого строения всех клеток, тканей и органов. В гистологические исследо­вания внедряется сканирующая электронная микроскопия, с помощью кото­рой можно видеть ультраструктуры в объемном изображении.

Наряду с внедрением в гистологические исследования электронного микроскопа продолжают совершенствоваться методы световой микроскопии. Разрабатываются методы иммуноцитохимии и иммуногистохимии, осно­ванные на применении меченых флуоресцентными красителями или фер­ментами моноклональных антител к выявляемому в клетках и тканях ве­ществу. С помощью этих методов можно с очень большой достоверностью идентифицировать клетки различных типов, а также клетки-продуценты гормонов и различных биологически активных веществ, выявлять клеточ­ные рецепторы, например, к гормонам, специфику секреторных и биосинте­тических процессов. В дальнейшем принципы иммуноцито- и гистохимии были распространены на электронную микроскопию. При этом в качестве метящих антитела веществ стали использовать коллоидное золото и фер-ритин. Широко стали использоваться методы световой и электронной авто­радиографии, позволяющие получить важные данные о синтезе и секреции различных макромолекул в клетке, закономерностях клеточного деления, локализации рецепторов. Все эти методы исследования по сути своей явля­ются морфофункниональными, синтетическими, поэтому третий период развития гистологии можно определить как синтетический период.

Таким образом, в настоящее время гистология проникла в самые глу­бинные тайны строения живых организмов. В ближайшее время ее задачи связаны не только с теоретическими исследованиями, но и с оказанием большой помощи практическому здравоохранению.

Источник:

megaobuchalka.ru

ВВЕДЕНИЕ В КУРС ГИСТОЛОГИИ, ЦИТОЛОГИИ И ЭМБРИОЛОГИИ

ВВЕДЕНИЕ В КУРС ГИСТОЛОГИИ, ЦИТОЛОГИИ И ЭМБРИОЛОГИИ.

Гистология( от греч. нistos - ткань, logos - учение ). Это наука о строении, развитии и функционировании тканей животных и человека.

Впервые термин «гистология» был предложен в 1819 году немецким ученым Р. Майером, но содержание и значение предмета гистологии в настоящее время значительно переросло границы этого определения.

Для более полного понимания гистологии, как науки необходимо остановится на особенностях структурной организации живых организмов.

Как известно, организм человека и животных представляет собой целостную систему, которая состоит из целого ряда иерархических уровней организации живой материи - клеток - тканей - морфофункциональных единиц органов - органов и систем органов. При этом следует подчеркнуть, что каждый уровень структурной организации организма существенно отличается от другого своими морфофункциональными особенностями.

Гистология вместе с другими фундаментальными медико-биологическими науками занимается изучением закономерностей структурной организации живого организма на различных уровнях. Наряду с этим, в отличие от других медико-биологических наук, основным предметом гистологических исследований являются именно ткани, представляющие собой систему следующую за клеточным уровнем организации живой материи в целостном организме. Ткани также являются элементами развития, строения, жизнедеятельности органов и их морфофункциональных единиц. В то же время сами ткани представляют собой систему клеток и неклеточных структур, объединенных и специализированных в процессе эволюции для выполнения важнейших функций в организме. Таким образом, гистология относится к фундаментальным дисциплинам медико-биологического профиля, предметом изучения которой, по современным представлениям, является микроскопическое строение организма животных, человека и изменения его в разнообразных условиях существования (эмбриональное развитие, рост, возрастные изменения, механизмы приспособления и компенсаторные реакции).

В соответствии с уровнем организации живой материи в целостном организме гистология подразделяется на следующие составные:

1. Цитология - наука об общих и специальных закономерностях морфофункциональной организации клеток.

2. Общая гистология рассматривает принципы организации разных тканей, их развитие и функциональное назначение.

3. Специальные гистология (микроскопическая анатомия) - изучает строение различных органов в аспекте взаимоотношений тканей, которые входят в их состав.

4. Эмбриология- изучает развитие зародыша человека и животных, а также рассматривает общие и специальные закономерности эмбрионального развития животных, которые располагаются на разных уровнях эволюционного развития, и эмбриональное становление тканей (гистогенез) и органов (органогенез).

Основная цель медицинской гистологии - это возможность предвидеть физические изменения человека в зависимости от социальных и экологических обстоятельств, и разработать методы управления всеми этапами онтогенеза с целью сохранения генофонда государства.

Основные задачи гистологии, как науки:

1) изучение закономерностей цито- и гистогенеза, строения и функций клеток и тканей;

2) изучение закономерностей дифференциации и регенерации тканей;

3) выяснение роли нервной, эндокринной и иммунной систем организма, в регуляции процессов онтогенеза клеток, тканей и органов;

4) исследование возрастных изменений клеток, тканей, органов;

5) исследование адаптации клеток, тканей, органов к действию различных биологических, физических, химических и других факторов;

6) изучение процессов морфогенеза в системе мать-плод;

7) исследование особенностей эмбриогенеза человека.

Дата добавления: 2016-07-27 ; просмотров: 1024 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник:

poznayka.org

Методы исследования в гистологии, цитологии и эмбриологии

Методы исследования в гистологии, цитологии и эмбриологии МЕТОДЫ ИССЛЕДОВАНИЯ В ГИСТОЛОГИИ, ЦИТОЛОГИИ И ЭМБРИОЛОГИИ

Для прогресса гистологии, цитологии и эмбриологии большое значение имеет внедрение достижений физики и химии, новых методов смежных наук - биохимии, молекулярной биологии, генной инженерии.

Современные методы исследования не только позволяют изучать ткани как единое целое, но и выделять из них отдельные типы клеток для изучения их жизнедеятельности в течение длительного времени, выделять отдельные клеточные органеллы и составляющие их макромолекулы (например, молекулы дезоксирибонуклеиновой кислоты - ДНК), исследовать их функциональные особенности.

Такие возможности открылись в связи с созданием новых приборов и технологий - различных типов микроскопов, компьютерной техники, рентге-ноструктурного анализа, применения метода ядерно-магнитного резонанса (ЯМР), радиоактивных изотопов и авторадиографии, электрофореза и хроматографии, фракционирования клеточного содержимого с помощью ультрацентрифугирования, разделения и культивирования клеток, получения гибридов; использования биотехнологических методов - получения гибридом и моноклональных антител, рекомбинантных ДНК и др.

Таким образом, биологические объекты можно изучать на тканевом, клеточном, субклеточном и молекулярном уровнях. Несмотря на внедрение в естественные науки разнообразных биохимических, биофизических, физических и технологических методов, необходимых для решения многих вопросов, связанных с жизнедеятельностью клеток и тканей, гистология в своей основе остается морфологической наукой с присущим ей набором методов. Последние позволяют охарактеризовать процессы, происходящие в клетках и тканях, их структурные особенности.

Главными этапами цитологического и гистологического анализа являются выбор объекта исследования, его подготовка для изучения под микроскопом, качественный и количественный анализ изображений гистологических элементов.

Объектами исследования служат живые и фиксированные клетки и ткани, их изображения, полученные при использовании световых и элек-

тронных микроскопов или на экране дисплея. Существует ряд методов, позволяющих проводить анализ указанных объектов.

2.1. МЕТОДЫ МИКРОСКОПИРОВАНИЯ ГИСТОЛОГИЧЕСКИХ ПРЕПАРАТОВ

Основным методом изучения биологических микрообъектов являются световая и электронная микроскопия, которые широко используются в экспериментальной и клинической практике.

Микроскопирование - главный метод изучения микрообъектов, используемый в биологии более 300 лет. Для изучения гистологических препаратов применяют разнообразные виды световых микроскопов и электронные микроскопы. С момента создания и применения первых микроскопов они постоянно совершенствовались. Современные микроскопы представляют собой сложные оптические системы, обладающие высокой разрешающей способностью. Размер самой маленькой структуры, которую можно видеть с помощью микроскопа, определяется наименьшим разрешаемым расстоянием (d), которое в основном зависит от длины волны света (?) и длины волн электромагнитных колебаний потока электронов и др. Эта зависимость приближенно определяется формулой d = ?/2. Таким образом, чем меньше длина волны, тем меньше разрешаемое расстояние, и тем меньшие по размерам микроструктуры можно видеть в препарате.

Таким образом, с помощью светового микроскопа можно увидеть не только отдельные клетки размером от 4 до 150 мкм, но и их внутриклеточные структуры - органеллы, включения. Для усиления контрастности микрообъектов применяют их окрашивание.

3 - сканирующее устройство для перемещения светового луча по оси X, Y, Z;

4 - блок питания и стойка управления лазерами; 5 - компьютер для обработки изображений

волновые лучи, переходят в возбужденное состояние. Обратный переход из возбужденного состояния в нормальное происходит с испусканием света, но с большей длиной волны. В флюоресцентном микроскопе в качестве источников света для возбуждения флюоресценции применяют ртутные или ксе-ноновые лампы сверхвысокого давления, обладающие высокой яркостью в области спектра 0,25-0,4 мкм (ближние ультрафиолетовые лучи) и 0,4-0,5 мкм (сине-фиолетовые лучи). Длина световой волны флюоресценции всегда больше длины волны возбуждающего света, поэтому их разделяют с помощью светофильтров и изучают изображение объекта только в свете флюоресценции. Различают собственную, или первичную, и наведенную, или вторичную, флюоресценцию. Любая клетка живого организма обладает собственной флюоресценцией, однако она часто бывает чрезвычайно слабой.

Первичной флюоресценцией обладают серотонин, катехоламины (адреналин, норадреналин), содержащиеся в нервных, тучных и других клетках, после фиксации тканей в парах формальдегида при 60-80 °С (метод Фалька).

Вторичная флюоресценция возникает при обработке препаратов специальными красителями - флюорохромами.

Существуют различные флюорохромы, которые специфически связываются с определенными макромолекулами (акридиновый оранжевый, родамин, флюоресцеин и др.). Например, при обработке препаратов акридиновым оранжевым ДНК и ее соединения в клетках имеют ярко-зеленое, а РНК и ее производные - ярко-красное свечение. Существует много красителей, с помощью которых можно выявить белки, липиды, внутриклеточные ионы кальция, магния, натрия и др. Таким образом, спектральный состав излучения несет информацию о внутреннем строении объекта и его химическом составе. Вариант метода флюоресцентной микроскопии, при котором и возбуждение, и излучение флюоресценции происходят в ультрафиолетовой области спектра, получил название метода ультрафиолетовой флюоресцентной микроскопии.

Для повышения контрастности флюорохромированных объектов применяется конфокальный вариант оптического микроскопа (см. рис. 2.1, в). В качестве освещения используется пучок монохроматического света малого диаметра, который создает лазерный источник. В каждый момент времени в фокусе микроскопа находится небольшой участок (объем) клетки. Пучок света перемещается по объекту (сканирует объект по осям X, Y, Z). При каждом перемещении пучка света по одной из линий сканирования получается информация об исследуемой структуре, находящейся в данной точке (объеме) по линии сканирования (оптическом срезе клетки), например о локализации белков в составе микротрубочек в клетке. Вся полученная информация от каждой точки сканирования клетки передается на компьютер, объединяется с помощью специальной программы и выдается на экран монитора в виде контрастного изображения. С помощью данного метода микроскопии получается информация о форме клеток, цитоскеле-те, структуре ядра, хромосом и др. С помощью программы компьютер на основе полученной информации по каждой линии сканирования создает объемное изображение клетки, что позволяет рассматривать клетку под разными углами зрения.

В интерференционном микроскопе пучок света от осветителя разделяется на два потока: один проходит через объект и изменяется по фазе колебания, второй идет, минуя объект. В призмах объектива оба пучка накладываются друг на друга. В результате строится изображение, в котором участки микрообъекта разной толщины и плотности различаются по степени контрастности. Проведя количественную оценку изменений, определяют концентрацию и массу сухого вещества.

Фазово-контрастный и интерференционный микроскопы позволяют изучать живые клетки. В них используется интерференция, возникающая при комбинации двух наборов волн и создающая изображение микроструктур. Преимуществом фазово-контрастной, интерференционной и темно-польной микроскопии является возможность наблюдать клетки в процессе движения и митоза. При этом регистрация движения клеток может производиться с помощью цейтраферной (покадровой) микровидеосъемки.

которая располагается перпендикулярно первому фильтру, и он не пропускает свет. Получается эффект темного поля. Структуры, содержащие продольно ориентированные молекулы (коллаген, микротрубочки, микрофиламенты), и кристаллические структуры, обладают свойством вращать ось световых лучей, исходящих из поляризатора. При изменении оси вращения данные структуры проявляются как светящиеся на темном фоне. Способность кристаллов или паракристаллических образований к раздвоению световой волны на обыкновенную и перпендикулярную к ней называется двойным лучепреломлением. Такой способностью обладают фибриллы поперечнополосатых мышц.

В гистологии используются трансмиссионные (просвечивающие) электронные микроскопы (ТЭМ), сканирующие (растровые) электронные микроскопы (СЭМ) и их модификации. С помощью ТЭМ можно получить лишь плоскостное изображение изучаемого микрообъекта. Для получения пространственного представления о структурах применяют СЭМ, способные создавать трехмерное изображение. Растровый электронный микроскоп работает по принципу сканирования электронным микрозондом исследуемого объекта, т. е. последовательно «ощупывает» остро сфокусированным электронным пучком отдельные точки поверхности. Такое исследование объекта называется сканированием (считыванием), а рисунок, по которому движется микрозонд, - растром. Полученное изображение выводится на телевизионный экран, электронный луч которого движется синхронно с микрозондом.

Главными достоинствами растровой электронной микроскопии являются большая глубина резкости, широкий диапазон непрерывного изменения увеличения (от десятков до десятков тысяч раз) и высокая разрешающая способность. Современными вариантами приборов для изучения поверхности объекта является атомно-силовой микроскоп и сканирующий туннельный микроскоп.

Метод электронной микроскопии «замораживание - травление» применяют для изучения внешней поверхности мембран клеток. После быстрого замораживания клеток при очень низкой температуре блок раскалывают лезвием ножа. Образующиеся кристаллы льда удаляют путем возгонки воды в вакууме. Затем участки клеток оттеняют, напыляя тонкую пленку тяжелого металла (например, платины). Метод позволяет выявлять трехмерную организацию структур.

Таким образом, методы замораживания - скалывания и замораживания - травления позволяют изучать нефиксированные клетки без образования в них артефактов, вызываемых фиксацией.

Методы контрастирования солями тяжелых металлов позволяют исследовать в электронном микроскопе отдельные макромолекулы - ДНК, крупных белков (например, миозин). При негативном контрастировании изучают агрегаты макромолекул (рибосомы, вирусы) либо белковые филаменты (актиновые нити).

МЕТОДЫ ИССЛЕДОВАНИЯ ФИКСИРОВАННЫХ КЛЕТОК И ТКАНЕЙ

Основным объектом исследования являются гистологические препараты, приготовленные из фиксированных тканей и органов. Препарат может представлять собой мазок (например, мазок крови, костного мозга, слюны, цереброспинальной жидкости и др.), отпечаток (например, селезенки, тимуса, печени), пленку из ткани (например, брюшины, плевры, мягкой оболочки мозга), тонкий срез. Гистологические препараты могут изучаться без специальной обработки, например с применением фазово-контрастного микроскопа. Наиболее часто для световой микроскопии используются срезы ткани или органа с последующей их окраской.

Процесс изготовления гистологического препарата для световой и электронной микроскопии включает следующие основные этапы: 1) взятие материала и его фиксация; 2) уплотнение материала; 3) приготовление срезов; 4) окрашивание или контрастирование срезов. Для световой микроскопии необходим еще один этап - заключение срезов в бальзам или другие

прозрачные среды (5). Фиксация обеспечивает предотвращение процессов разложения, что способствует сохранению целостности структур. Это достигается тем, что взятый из органа маленький образец либо погружают в фиксатор (спирт, формалин, растворы солей тяжелых металлов, осмиевая кислота, специальные фиксирующие смеси), либо подвергают термической обработке. Под действием фиксатора в тканях и органах происходит необратимая коагуляция белков, вследствие которой жизнедеятельность прекращается, а структуры становятся мертвыми, фиксированными.

МЕТОДЫ ИССЛЕДОВАНИЯ ЖИВЫХ КЛЕТОК И ТКАНЕЙ

Изучение живых клеток и тканей позволяет получить наиболее полную информацию об их жизнедеятельности - проследить движение, процессы деления, разрушения, роста, дифференцировки и взаимодействия клеток, продолжительность их жизненного цикла, реактивные изменения в ответ на действие различных факторов.

Наиболее удобным органом для вживления таких камер и последующего наблюдения является ухо какого-либо животного (например, кролика). Участок уха с прозрачной камерой помещают на предметный столик микроскопа и в этих условиях изучают динамику изменения клеток и тканей в течение продолжительного времени. Так могут изучаться процессы выселения лейкоцитов из кровеносных сосудов, различные стадии образования соединительной ткани, капилляров, нервов и другие процессы. В качестве естественной прозрачной камеры можно использовать глаз экспериментальных животных. Клетки, ткани или образцы органов помещают в жидкость передней камеры глаза в угол, образованный роговицей и радужкой, и наблюдение ведут через прозрачную роговицу. Таким образом была проведена трансплантация оплодотворенной яйцеклетки и прослежены ранние стадии развития зародыша. Обезьянам были пересажены небольшие кусочки матки и изучены изменения ее слизистой оболочки в различные фазы менструального цикла.

Широкое применение нашел метод трансплантации клеток крови и костного мозга от здоровых животных-доноров животным-реципиентам, подвергнутым смертельному облучению. Животные-реципиенты после трансплантации оставались живыми вследствие приживления донорских клеток, образующих в селезенке колонии кроветворных клеток. Исследование числа колоний и их клеточного состава позволяет выявлять количество родоначальных кроветворных клеток и различные стадии их дифференцировки. С помощью метода колониеобразования установлены источники развития всех клеток крови.

Различают суспензионные культуры (клетки взвешены в среде), тканевые, органные и монослойные культуры (эксплантированные клетки образуют на стекле сплошной слой). Обеспечиваются стерильность среды и температура, соответствующая температуре тела. В этих условиях клетки в течение длительного времени сохраняют основные показатели жизнедеятельности - способность к росту, размножению, дифференцировке, движению. Такие культуры могут существовать многие дни, месяцы и даже годы, если обновлять среду культивирования и пересаживать жизнеспособные клетки в другие сосуды. Некоторые виды клеток благодаря изменениям в их геноме могут сохраняться и размножаться в культуре, образуя непрерывные клеточные линии. В разработку методов культивирования клеток и тканей большой вклад внесли А. А. Максимов, А. В. Румянцев, Н. Г. Хлопин, А. Д. Тимофеевский, Ф. М. Лазаренко. В настоящее время получены клеточные линии фибробластов, миоцитов, эпителиоцитов, макрофагов, которые существуют многие годы.

Использование метода культивирования позволило выявить ряд закономерностей дифференцировки, злокачественного перерождения клеток, взаимодействий клеток с вирусами и микробами. Особую значимость метод культивирования тканей имеет для проведения экспериментальных наблюдений. Взятые из организма человека клетки при пункции или биопсии могут в культуре тканей использоваться для определения пола, наследственных заболеваний, злокачественного перерождения, выявления действия ряда токсичных веществ.

Клеточные культуры широко применяются для гибридизации клеток.

Разработаны методы разделения тканей на клетки, выделение отдельных типов клеток и их культивирования. Вначале ткань превращают в суспензию клеток путем разрушения межклеточных контактов и внеклеточного матрикса с помощью протеолитических ферментов (трипсин, коллагеназа) и соединений, связывающих Са 2+ (с помощью ЭДТА - этилендиаминтетраацетата). Далее полученную суспензию разделяют на фракции клеток различных типов с помощью центрифугирования, позволяющего отделить более тяжелые клетки от легких, большие от малых, или путем прилипания клеток к стеклу или пластмассе, способность к которому у различных типов клеток неодинакова. Для обеспечения специфического прилипания клеток к поверхности стекла используют антитела, специфически связывающиеся с клетками одного типа. Прилипшие клетки затем отделяют, разрушая

матрикс ферментами, при этом получают взвесь однородных клеток. Более тонким методом разделения клеток является мечение антителами, связанными с флюоресцирующими красителями. Меченые клетки отделяются от немеченых с помощью сортера (электронного флюоресцентно-активируемого клеточного анализатора). Клеточный анализатор сортирует в 1 секунду около 5000 клеток. Выделенные клетки можно изучать в условиях культивирования.

Метод культивирования клеток позволяет изучать их жизнедеятельность, размножение, дифференцировку, взаимодействие с другими клетками и др.

Культуры обычно готовят из суспензии клеток, полученной вышеописанным методом диссоциации ткани. Большинство клеток не способны расти в суспензии, им необходима твердая поверхность, в качестве которой используют поверхность пластиковой культуральной чашки, иногда с компонентами внеклеточного матрикса, например коллагена. Первичными культурами называют культуры, приготовленные непосредственно после первого этапа фракционирования клеток, вторичными - культуры клеток, пересаженные из первичных культур в новую среду. Можно последовательно перевивать клетки в течение недель и месяцев, при этом клетки сохраняют характерные для них гистогенетические признаки (например, клетки эпителия образуют пласты). Исходным материалом для клеточных культур обычно служат эмбриональные ткани и ткани новорожденных.

В качестве питательных сред используют смеси солей, аминокислот, витаминов, сыворотки крови, экстракт куриных эмбрионов, эмбриональную сыворотку и др. В настоящее время разработаны специальные среды для культивирования различных типов клеток. Они содержат один или несколько белковых факторов роста, необходимых клеткам для жизнедеятельности и размножения. Например, для роста нервных клеток необходим фактор роста нервов.

У большинства клеток в культуре наблюдается определенное число делений (50-100), а затем они погибают. Иногда в культуре появляются мутантные клетки, которые размножаются бесконечно и образуют клеточную линию (фибробла-сты, эпителиоциты, миобласты и др.). Мутантные клетки отличаются от раковых клеток, также способных к непрерывному делению, но клетки растут без прикрепления к твердой поверхности. Раковые клетки в культуральных чашках образуют более плотную популяцию, чем популяции обычных клеток. Аналогичное свойство можно вызвать экспериментально у нормальных клеток путем трансформации их опухолеродными вирусами или химическими соединениями, при этом образуются неопластически трансформированные клеточные линии. Клеточные линии нетрансформированных и трансформированных клеток можно длительно сохранять при низких температурах (-70 °С). Генетическую однородность клеток усиливают клонированием, когда из одной клетки при ее последовательном делении получают большую колонию однородных клеток. Клон - это популяция клеток, происходящих из одной клетки-предшественника.

клетка. Оболочки ядер у гетерокариона разрушаются, и их хромосомы объединяются в одном большом ядре.

Клонирование гибридных клеток приводит к образованию гибридных клеточных линий, которые используются для изучения генома. Например, в гибридной клеточной линии «мышь-человек» установлена роль хромосомы 11 человека в синтезе инсулина.

Антитела можно использовать для изучения функции различных молекул, вводя их через плазмолемму непосредственно в цитоплазму клеток тонкой стеклянной пипеткой. Например, введение антител к миозину в цитоплазму оплодотворенной яйцеклетки морского ежа останавливает разделение цитоплазмы.

Методы гибридизации широко используют в современной биологии для изучения структуры генов и их экспрессии.

МЕТОДЫ ИССЛЕДОВАНИЯ ХИМИЧЕСКОГО СОСТАВА И МЕТАБОЛИЗМА КЛЕТОК И ТКАНЕЙ

Для изучения химического состава биологических структур - локализации веществ, их концентрации и динамики в процессах метаболизма применяют специальные методы исследования.

нов - ДНК, РНК, белков, углеводов, липидов, аминокислот, минеральных веществ, витаминов, активность ферментов. Эти методы основаны на специфичности реакции между химическим реактивом и субстратом, входящим в состав клеточных и тканевых структур, и окрашивании продуктов химических реакций. Для контроля специфичности реакции часто применяют соответствующие ферменты. Например, для выявления в клетках рибонуклеиновой кислоты (РНК) часто используют галлоцианин - краситель с основными свойствами, а наличие РНК подтверждают контрольной обработкой рибонуклеазой, расщепляющей РНК. Галлоцианин окрашивает РНК в сине-фиолетовый цвет. Если срез предварительно обработать рибонуклеазой, а затем окрасить галлоцианином, то отсутствие окрашивания подтверждает наличие в структуре рибонуклеиновой кислоты. Описание многочисленных цито- и гистохимических методов дается в специальных руководствах.

Сочетание гистохимических методов с методом электронной микроскопии привело к развитию нового перспективного направления - электронной гистохимии. Этот метод позволяет изучать локализацию различных химических веществ не только на клеточном, но и на субклеточном и молекулярном уровнях. Для изучения макромолекул клеток используют очень чувствительные методы с применением радиоактивных изотопов и антител, позволяющие обнаружить даже небольшое содержание молекул (менее

Радиоактивные изотопы при распаде ядра испускают заряженные частицы (электроны) или излучение (например, гамма-лучи), которые можно зарегистрировать специальными приборами. Радиоактивные изотопы используют в методе радиоавтографии. Например, с помощью радиоизотопов 3 Н-тимидина исследуют ДНК ядра, с помощью 3 Н-уридина - РНК.

ным образом определяется белками. Для усиления специфичности реакции применяют моноклональные антитела, образуемые линией клеток, - клонами (одна линия - один клон), полученной методом гибридом из одной клетки. Метод гибридом позволяет получать моноклональные антитела с одинаковой специфичностью и в неограниченных количествах. Антитела можно использовать для изучения антигенов как на световом, так и на ультраструктурном уровнях с помощью электронного микроскопа. В клинической диагностике широкое применение получили методы иммуногистохимии на парафиновых срезах. Предложено большое количество молекулярных маркеров и методов обнаружения белков промежуточных филаментов, пролиферативных, дифференцировочных и апоптозных белков в клетках. Для стандартизации обработки препаратов используется иммуностейнер - устройство, с помощью которого все операции проводятся без вмешательства со стороны исследователя.

Методы иммунофлюоресцентного и иммуногистохимического анализов широко и эффективно используются в научных исследованиях и в лабораторной диагностике. Продукты реакции можно окрашивать флюоресцирующими красителями и выявлять в люминесцентном микроскопе или использовать специальные наборы реактивов, которые окрашивают исследуемые белки, и анализировать препараты с помощью светового микроскопа. Эти методы применяются для изучения процессов дифференцировки клеток, выявления в них специфических химических соединений и структур. Методы позволяют с высокой точностью охарактеризовать функциональное состояние клеток, выявить гистогенетическую принадлежность и трансформацию клетки при онкологических заболеваниях.

Для разделения вышеуказанных компонентов клетки применяют высокоскоростную центрифугу (80 000-150 000 об./мин). Вначале оседают (седи-ментируются) на дне пробирки более крупные части (ядра, цитоскелет). При дальнейшем увеличении скоростей центрифугирования надосадоч-ных фракций последовательно оседают более мелкие частицы - сначала митохондрии, лизосомы и пероксисомы, затем микросомы и мельчайшие пузырьки и, наконец, рибосомы и крупные макромолекулы. При центрифугировании различные фракции оседают с различной скоростью, образуя в пробирке отдельные полосы, которые можно выделить и исследовать. Фракционированные клеточные экстракты (бесклеточные системы) широ-

ко используют для изучения внутриклеточных процессов, например для изучения биосинтеза белка, расшифровки генетического кода и др.

Методы хроматографии и электрофореза применяют для анализа пептидов, получаемых при расщеплении белковой молекулы, и получения так называемых пептидных карт белков. Подробно эти методы описаны в учебниках биохимии.

В настоящее время наряду с качественными методами разработаны и применяются количественные гистохимические методы определения содержания различных веществ в клетках и тканях. Особенность количественных гистохимических (в отличие от биохимических) методов исследования заключается в возможности изучения концентрации химических компонентов в конкретных структурах клеток и тканей.

Современные микроскопы - цитофлюориметры позволяют обнаружить в различных структурах малые количества вещества (до 10 -14 -10 -16 г) и оценить локализацию исследуемых веществ в микроструктурах.

МЕТОДЫ АНАЛИЗА ИЗОБРАЖЕНИЯ КЛЕТОЧНЫХ И ТКАНЕВЫХ СТРУКТУР

Полученные изображения микрообъектов в микроскопе, на экране дисплея, на электронных микрофотографиях могут подвергаться специальному анализу - выявлению морфометрических, денситометрических параметров и их статистической обработке. Морфометрические методы позволяют определять с помощью специальных сеток (Е. Вейбеля, А. А. Глаголева, С. Б. Стефанова) число любых структур, площади их сечений, диаметры и др. В частности в клетках могут быть измерены площади ядер, цитоплазмы, их диаметры, ядерно-цитоплазматические отношения и др. Существуют ручная морфометрия и автоматизированная морфометрия, при которой все параметры измеряются и регистрируются в приборе автоматически.

Все большее распространение получают автоматизированные системы обработки изображений (АСОИз), позволяющие наиболее эффективно реализовать перечисленные выше количественные методы для изучения клеток и тканей. При этом аналитические возможности количественной микроскопии дополняются методами анализа и распознавания образцов, основан-

ными на обработке с помощью электронно-вычислительных машин (ЭВМ) информации, извлекаемой из изображений клеток и тканей. По существу можно говорить об устройствах, не только усиливающих оптические возможности зрительного анализатора человека, но и многократно расширяющих его аналитические возможности. Это позволяет получать новую информацию о не выявляемых ранее процессах, моделировать и прогнозировать их развитие в клетках и тканях.

Вместе с тем участие в эксперименте ЭВМ требует от исследователя нового подхода к его проведению, владения навыками составления алгоритмов процесса исследования, точности рассуждений и в конечном итоге повышения научно-методического уровня исследования.

Источник:

zav.ansya.ru

Яглов В.В. Основы цитологии, эмбриологии и гистологии в городе Омск

В этом интернет каталоге вы всегда сможете найти Яглов В.В. Основы цитологии, эмбриологии и гистологии по доступной цене, сравнить цены, а также посмотреть похожие предложения в группе товаров Медицина. Ознакомиться с характеристиками, ценами и обзорами товара. Транспортировка производится в любой населённый пункт России, например: Омск, Оренбург, Волгоград.